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Abstract
This paper analyzes the impact of uphill grades on the acceleration drivers choose to impose on their vehicles. Statistical infer-
ence is made based on the maximum likelihood estimation of a two-regime stochastic car-following model using Next
Generation SIMulation (NGSIM) data. Previous models assume that the loss in acceleration on uphill grades is given by the effects
of gravity. We find evidence that this is not the case for car drivers, who tend to overcome half of the gravitational effects by
using more engine power. Truck drivers only compensate for 5% of the loss, possibly because of limited engine power. This indi-
cates not only that current models are severely overestimating the operational impacts that uphill grades have on regular vehi-
cles, but also underestimating their environmental impacts. We also find that car-following model parameters are significantly
different among shoulder, median and middle lanes but more data is needed to understand clearly why this happens.

Modeling truck performance with roadway grade has a
long history. In the 1970s researchers collected speed and
weight data for trucks operating on highway grades (1).
Based on the data, they found that trucks experienced
great acceleration loss on uphill segments and the magni-
tude of acceleration loss depended on the approach speed.
Later, the previous research was extended by Gillespie
(2), who developed a methodology to predict truck accel-
eration loss on grades for different classes of trucks.
These studies for designing climbing lanes only consider
the tangent vertical profiles, so Yu (3) focused on the
impact of vertical curvature on truck performance.

The impact of the roadway grade on passenger cars
has long been neglected. In the AASHTO report (4), the
authors point out that passenger cars can generally nego-
tiate a grade of 5% or less without significant accelera-
tion loss. Modeling work to incorporate roadway grade
with vehicle acceleration can be found in Laval (5), who
argued that roadway grade is a key ingredient to produce
traffic instabilities as observed empirically. In that study,
the crawl speed for both passenger cars and trucks was
calculated based on the free motion model from McLean
(6). Later, Laval et al. successfully replicated periodic
oscillations at uphill segments with a car-following model
that included the effects of gravity (7). They assumed
that on an upgrade segment the acceleration because of
gravity in the direction of movement, gG, is subtracted
from the acceleration a driver would have imposed on a

vehicle on a flat segment. However, this assumption
implies that drivers do not press the gas pedal harder on
uphill segments, which may not be the actual case, as
reported in Ros et al. (8). That study presented a novel
car-following model along with a lane-changing model
and found that the influence of roadway grade on vehicle
longitudinal motion is more realistic than that predicted
by existing models (8). However, the study did not inves-
tigate the difference among vehicle classes and more data
are needed for calibration and validation.

The purpose of this paper is to test the effect of road-
way grade on vehicles and find the difference between
regular vehicles and trucks. To this end, this paper is
organized as follows. First the model is introduced, then
the US 101 dataset is used to estimate model parameters
and statistical tests are performed. At the end of the
paper, a discussion and conclusions are provided.

Background

The model used in this paper is the two-regime stochastic
car-following model of Xu and Laval (9, 10). It
corresponds to an extension of Newell’s simplified
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car-following theory (11), where vehicle location is given
by the minimum of a free-flow term expressing the loca-
tion (Y ) that the vehicle can achieve when unobstructed
by traffic, and a congestion term giving the most down-
stream location (Z) that the vehicle can safely achieve
without colliding with its leader. It can be formulated as:

xj(t)= minfxj(t � t)+ jj(t)|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
free�flow (Y)

, xj�1(t � t)� d|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
congestion (Z)

g, ð1Þ

where xj(t) is the position of j -th vehicle at time t, t is
the wave trip time between two consecutive vehicle tra-
jectories in congestion, d is the jam spacing and jj(t) is a
stochastic process describing the desired displacement of
vehicle j during t � t and t. Notice that t is typically
taken as the time step of the car-following model.

The free-flow term Y in the proposed acceleration
model (9, 10) is as follows:

dj(t)= v(t)dt, j(0)= 0, (2a)
dv(t)= (vc � v(t))bdt+(mvc � v(t))sdW (t),
v(0)= v0 (2b)

8<:
and has analytical solution where v(t) is the current vehi-
cle speed, vc is the desired speed, b is the inverse relaxa-
tion time, m is a dimensionless parameter that regulates
acceleration error, W (t) is a standard Brownian Motion
and s is its diffusion coefficient. A normalized diffusion
coefficient ~s is introduced by ~s2 =s2=b.

In the congestion part Z of the model, wave trip time t

and d are assumed to follow the bivariate normal (BVN)
distribution (12), that is:

(t, d);BVN(mt,md,st,sd, r):

Since random processes Y and Z are normally distrib-
uted: Y;N (mY ,sY ), Z;N (mZ ,sZ), one can show
that the probability density function of xj(t), f (x;Y),
given the data up to time t and the set of model para-
meters Y=(u,mt,md,b,m, ~s, r,st,sd), is given by

f (x;Y)=
1

2
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dt is the complementary error
function. The mean and standard deviations of the free-
flow and congestion terms are given by:

mY = xj(ti � t0)+E½j(t0)�, (4a)
sY =SD½j(t0)�, (4b)
mZ = xj�1(ti � mt)� md, (4c)

sZ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

j�1(ti)s2
t +s2

d + 2rv2
j�1(ti)s2

ts2
d

q
: (4d)

8>>><>>>:

which is all we need to evaluate Equation 3 and use
maximum likelihood estimation (MLE) to estimate the
parameters. For details of the model and parameter esti-
mation, the reader is referred to Xu and Laval (9, 10).

Modeling Vehicle Acceleration with
Roadway Grade

In this model, the mean of vehicle acceleration is:

a(v)= (vc � v(t)) b, ð5Þ

On a flat road, vc equals the free-flow speed u. To take
the upgrade of the roadway into account, we replace
Equation 5 by

a(v)= (u� v(t)) b� ag maxf0,Gg, ð6Þ

where u is the free-flow speed, that is, the desired speed
on a flat road segment, g = 9:81m/s 2 is the acceleration
of gravity, G is the roadway grade expressed as a decimal
and a is a dimensionless parameter. Notice that in exist-
ing free-motion acceleration models (7), a= 1, which is
consistent with the assumption that the acceleration
because of gravity in the direction of movement,
g maxf0,Gg, is subtracted, in its entirety, from the accel-
eration the driver would impose on the vehicle on a flat
segment, (vc � v(t)) b. Here, the parameter a is added to
relax this strong assumption in the literature: a\1 indi-
cates drivers compensate for the upgrade, that is, that
they press the gas pedal harder than they would on a flat
segment, while a.1 implies a softer than usual pressure.
Values of a\0 are unlikely as it would indicate that
acceleration increases with the upgrade.

Notice that the desired speed becomes a function of
the upgrade, and can be expressed as:

vc = u� ag maxf0,Gg=b: ð7Þ

Data Set

Trajectory Data

The Next Generation SIMulation (NGSIM) datasets con-
tain detailed and accurate field data for traffic research
and development. In this paper, we use the U.S. Highway
101 (US 101) dataset, which contains detailed vehicle tra-
jectory data on southbound US 101, also known as the
Hollywood Freeway, in Los Angeles, CA, collected on
June 15, 2005. The length of the study segment is approxi-
mately 640m (2,100 ft). There are five mainline lanes
throughout the section and one auxiliary lane through a
portion of the corridor between the on-ramp at Ventura
Boulevard and the off-ramp at Cahuenga Boulevard (see
Figure 1). This dataset provides the precise location of
each vehicle area every one-tenth of a second during
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45min in the morning peak hour. This period includes
uncongested and congested traffic states and the transi-
tion between these two states (13).

Time–space diagrams of the vehicle trajectories are
given the Figure 2. In Figure 2, the distance of each vehi-
cle is drawn against time; the slope of the trajectory indi-
cates the vehicle’s speed. The green color represents a
free-flow state and the red color represents a congested
state. Periodic traffic congestion can be observed from
the visualization of the dataset.

Grade Data

Modeling vehicle acceleration with roadway grade
requires high-accuracy grade data. In this study, Google
Earth was used to obtain the elevation profile along the
study corridor, and the grade data was derived using a
second-order interpolation, see Figure 2. The grade data
in this study was verified with the USGS National
Elevation Dataset (14) and it was concluded that the
data is valid for this study. One can see that the segment
has an average upgrade of around 2%, with larger
grades near the beginning of the segment. Also note in
this figure that the oscillations are not caused by the
grade, but by a crew of workers located near the 400m
mark, as reported in (15).

Sample Size

The data used is from five mainline lanes during the
period 7:50–8:05 a.m. Lane 1 is the leftmost lane and

Lane 5 is the rightmost lane. Vehicles that performed
lane changing during the period were removed. The
remaining vehicles are used in the parameter estimation.

For vehicle i, if it entered the study corridor at tenter
and left the study corridor at tleave, 50 uniform random
variables can be generated, t1, t2, :::t50, between tenter and
tleave as the sample time stamp, such that there will be 50
sample points for one vehicle. Fifty sample points are
selected from each vehicle to obtain as many sample
points as possible while avoiding too much duplication.
The 50 sample points are later randomly divided into five
groups and each data point has different vehicle speed,
roadway grade and other parameter values. This sam-
pling method help increase sample size while preventing
serial correlation from one vehicle. Table 1 summarizes
the sample size for the parameter estimation for each
lane, each vehicle class.

Data for each vehicle are randomly divided into five
groups, each with a size of 10. Four groups (80% of the
data) are used as training data and the remainder group
(20% of the data) as validation data. For the four groups
of training data, maximum likelihood is used to estimate
parameter values, then the results from the four training
groups are applied separately to the validation data. The
estimation result that gives the biggest log-likelihood
value on the validation data is selected as the final esti-
mation result.

Data Set

This stochastic car-following model has the parameters
summarized in Table 2:

MLE is used for the estimation of parameters in the
proposed model. In a nutshell, MLE consists in finding
the value of Y that maximizes the log-likelihood
‘(x;Y)=

P
i, j ln½f (xj(ti);Y)�:

This gives the MLE estimator of Y, and is denotedbY. MLE is appealing because, for large samples, one can
perform statistical inference analysis to answer impor-
tant questions in car-following behavior. For large sam-
ples the distribution of MLE estimators tends to the
multivariate normal distribution, that is, bY!dist N (Y,Y),
where the covariance matrix Y can be approximated
using the Cramer-Rao lower bound: Y’ J ( bY)�1 where
J (Y)= � ∂2‘(Y)

∂Y2 is the observed Fisher’s information for
the sample. This important result allows us to use the
statistical inference toolbox, in particular, confidence
intervals and hypothesis testing.

Hypothesis Testing

A likelihood-ratio test can be used to compare
the goodness-of-fit of different model specifications.
For example, if we have two models with number of

Figure 1. The site for US 101 data collection (13).
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parameters n1 and n2 (n1.n2), respectively,
the likelihood-ratio test statistic is L(x)=

2 ‘(x; cY1)� ‘(x, cY2)
h i

which follows a chi-square distri-

bution with n1 � n2 degrees of freedom. For more infor-
mation on MLE, the reader is referred to Hubbert (16).

The NGSIM data set allows us to test parameter dif-
ferences across vehicle types and lanes. The estimation
and hypothesis test results are shown in the following
sections.

Homogeneity among Vehicle Classes

Table 3 summarizes the estimation results for different
vehicle classes. The first three rows in this table give the
results for models estimated with data only involving the
corresponding vehicle class as the follower, while the last
row corresponds to a model estimated with the overall
data set, without distinguishing vehicle types. It can be
seen that we cannot reject the hypothesis that model
parameters are different for different vehicle classes.

Figure 3 shows the 99% confidence intervals (CI) of
the estimated values of b, ~s and a, which can be used to
test the equality of these parameter values across vehicle
types simply by observing if these intervals overlap or
not. It can be seen that the intervals for motorcycles and
trucks are much wider than that of passenger cars, which
is the consequence of the available sample sizes. It can be
seen that the main differences between cars and trucks
are in the following parameters:

1. b: Trucks have a higher value than cars for this
parameter, which implies that trucks tended to
accelerate more aggressively than cars.

2. ~s: Trucks exhibit a higher value, which implies
that truck drivers have a larger variation when
accelerating, which might be related to the

Figure 2. A visualization of the US 101 dataset (7).
Note: NGSIM = Next Generation SIMulation.

Table 1. Number of Sample Points for Parameter Estimation (50 Sample Points per Vehicle)

Lane Motorcycles Cars Trucks Total

1 300 13,450 50 13,800
2 150 10,750 0 10,900
3 0 9,150 200 9,350
4 100 6,650 100 6,850
5 50 5,800 100 5,950
Total 600 45,800 450 46,850

Table 2. Parameters in the Model

Parameter Unit Meaning

u km/h free-flow speed
b hour �1 inverse relaxation time.
m na regulates acceleration error
~s na normalized diffusion coefficient
md meter mean jam spacing
mt second mean wave trip time
r na correlation between d, t
sd meter standard deviation of jam density
st second standard deviation of wave trip time
a na upgrade parameter

Note: na = not applicable.
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number of gears that truck engines use when
accelerating.

3. a: Again, this parameter is larger for trucks, and
the implications are discussed below.

Of the findings above, the authors believe that the last
one is the most significant in relation to the impact of
current modeling frameworks. Recall that the parameter
a represents the proportion of the gravitational forces
because of upgrades that are absorbed by the motion of
the vehicle, and has been assumed to be 100% until now.
The estimation results show that for regular vehicles
â= 0:51 and for heavy vehicles â= 0:95. This means
that car drivers demand more power from the engine to
compensate for gravitational forces such that their actual
motion loses only about 50% of what they would have
lost had they continued to drive without compensating.

In the case of trucks, we can see that the standard
assumption in the literature is appropriate, as they seem
to compensate for only 5% of the gravitational force.
For motorcycles â= 0:78 is significantly higher than for
regular vehicles, which may seem counter-intuitive since
motorcycles have a much higher power-to-weight ratio.
A possible explanation is that, precisely for this reason,
motorcycles are almost always in the car-following model
with little slack for extra acceleration.

Homogeneity among Lanes

Tables 4 and 5 include the estimation results for separate
lanes, and Figure 4 shows the CIs of estimated parameter
values. It can be seen from Table 4 that the hypothesis
that model parameters are different for different lanes
cannot be rejected. However, since the estimation results
for the three middle lanes are very similar, the hypothesis
that the parameters for the three middle lanes are the
same was tested and accepted; see Table 5. The slight dif-
ferences between the vehicles on the three middle lanes
are in t and the way they deal with upgrades, which is
implied by the different values of a.

These results accord well with Figure 4, where we can
verify that most parameter values are the same for Lanes
2, 3 and 4 since their confidence intervals overlap. It can
be seen that the main difference between the middle three
lanes compared with the median and shoulder lanes
resides in the jam spacing, which is substantially higher
in the middle lanes. This can be explained by the higher
proportion of trucks and the smaller proportion of
motorcycles usually observed in the middle lanes.
Another significant difference among lanes can be seen
in the middle part of the figure, where the middle lanes
exhibit a significantly smaller diffusion coefficient ~s.
This implies that in these lanes driver acceleration tends
to have less variation than in other lanes. Unfortunately,T
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the explanation that it is because of the higher propor-
tion of trucks does not apply here since we have seen the
trucks tend to have a higher ~s. Another possibility is that
these lanes exhibit less stop-and-go activity compared
with the other lanes and therefore provide fewer oppor-
tunities for accelerating in free flow, which is when ~s can
be estimated. The difference of the upgrade parameter a

among lanes may be explained by the different vehicle
class distribution on each lane. For example, Lane 1 has
least percentage of trucks and this may lead to a larger
value of the upgrade parameter a compared with other
lanes. There is a slight difference between the vehicles on
the three middle lanes implied by the different values of
a. However, according to the likelihood-ratio test, the
parameters are still the same among the three middle
lanes. The slight difference in the estimated mean value
of a may be caused by the randomness. The confidence
intervals of a of the three middle lanes still overlap in
Figure 4.

Discussion

In this paper, the authors have used statistical inference
based on the maximum likelihood estimation of a two-
regime stochastic car-following model using NGSIM
data. The main finding pertains to the impact of uphill
grades on the acceleration drivers choose to impose on
their vehicles. Evidence was found that the current
assumption in the existing free-motion acceleration mod-
els (a =1) does not apply to car drivers, who tend to
overcome half of the gravitational effects by using more
engine power. Truck drivers only compensate for 5% of
the loss, possibly because of limited engine power; how-
ever, more truck data is needed to increase our confi-
dence in these results.

This finding is important for current applications
because it means not only that current models are
severely overestimating the operational impacts that

uphill grades have on regular vehicles, but also underesti-
mating their environmental impacts. For example, the
VISSIM model (17) uses a= 1 and emissions calcula-
tions do not consider driver compensation as found here.
The emissions and energy consumption for a Honda
Pilot 2004 have been calculated with the MOVES model
(18). In the simulation experiment, the car is accelerating
from a complete stop on a 5% uphill segment. The free-
flow speed u= 100km/h and the inverse relaxation time
b= 0:07 s �1. The results are shown in Table 6. The
results show that the current free-motion acceleration
models (a= 1) are underestimating the environmental
impacts by 10% in an acceleration process at uphill
grades.

It is also found that the car-following model para-
meters related to the acceleration process are significantly
different among shoulder, median and middle lanes. This
can be partially explained by the greater proportion of
trucks in the middle lanes, but more data is needed to
complete the analysis.

Parameters d and t are the key parameters controlling
the congested branch in the model. In the model, we
assume they follow a BVN distribution, as suggested by
Ahn et al. (12). From the estimation results, the correla-
tion between d and t is found to be zero because the
parameter r has a low t-statistic. This result is consistent
with Ahn et al. (12) and indicates that traffic waves pro-
pagate as a random walk.

In the authors’ previous work (10), it was found that
if we select m ’ 1:2, then the model could replicate both
the oscillation and capacity drop. However, the present
analysis with the NGSIM data gives a strong indication
that the value of m is larger than 3, which means that the
acceleration processes of drivers are closer to a
Brownian motion than to a geometric Brownian motion.
Unfortunately, it also means that the model loses its abil-
ity to explain the speed–capacity relationship reported
by Yuan et al. (19). Research is needed to verify

Figure 3. 99% confidence intervals of the estimated values of b, ~s and a for different vehicle classes.
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empirically that this relationship exists in the absence of
lane changes.

In this paper,

a(v)= (u� v(t)) b� gf (G)= (u� v(t)) b� ag maxf0,Gg,
ð8Þ

was used to take the roadway upgrade into account,
where gf (G) is the acceleration to be subtracted because
of grade. However, this formulation assumes a linear
relationship between the desired speed and roadway
upgrade for the free-flow part of the model, see proposed
model 1 in Figure 5. We argue that (i) this relationship
may not be linear, (ii) downgrade may also affect the
driver’s acceleration process, and (iii) roadway grade
may also influence the congestion term in the proposed
model.

One of the limitations of this study is that a linear
model was assumed between vehicle acceleration and
roadway grade. However, the impact of roadway grade
on the vehicle acceleration may be more complicated. In
future research, the authors will estimate different func-
tional forms for f (G) for different values of G, including
downgrades. The function f (G) could be piece-wise lin-
ear, polynomial or more complex. Some options for f (G)
are shown in Figure 5. The authors will carefully

compare different models and choose the best fit of f (G)
based on various datasets. They also plan to investigate
the impact of gradient sequence on vehicle acceleration
behavior as an extension of the current work. Also,
increasing the sample size of trucks and motorcycles is
helpful in the future.

To conclude, this study is based on the statistical
inference from a two-regime stochastic car-following

Figure 4. 99% confidence intervals of the estimated values of d, ~s and a based on data from five lanes.

Table 6. CO2 Emission and Energy Consumption Comparison for Different Values of a

Distance traveled (meter)

CO2 emission (gram) Energy consumption (kJ)

a= 0 a= 0:5 a= 1 a= 0 a= 0:5 a= 1

500 287.7 254 210.1 4,003 3,535 2,924
1,000 484.5 418.9 366.5 6,742 5,816 5,387
2,000 857.4 744.7 673.1 11,931 10,362 9,366

Figure 5. Possible relationships between f (G) and roadway
grade in the model.

8 Transportation Research Record 00(0)



model and the results are as follows. Car drivers tend to
overcome half of the gravitational effects by using more
engine power and in doing so, they generate more emis-
sions, while truck drivers are only able to compensate
5% of the acceleration loss because of roadway grade.
This study also finds that the acceleration process is sig-
nificantly different among shoulder, median and middle
lanes.
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