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Analysis of a Two-Regime Stochastic
Car-Following Model: Explaining Capacity
Drop and Oscillation Instabilities

Tu Xu1 and Jorge A. Laval1

This paper presents analysis of a Newell-type stochastic
car-following model based on stochastic desired accelera-
tion processes. This formulation was shown to generalize
previous efforts based on Brownian and geometric
Brownian acceleration processes, each reproducing a dif-
ferent feature of the traffic instabilities. Here, we show
that the unified model is able to capture virtually all
types of traffic instabilities consistently with empirical
data, including formation and propagation of oscilla-
tions, capacity drop in the absence of lane changes and
the concave growth pattern of vehicle speeds along a
platoon.

Stop-and-go traffic oscillations and capacity drop at
bottlenecks have long been correlated with lane changing
activity (1–11). However, it has been observed that these
phenomena can occur in the absence of lane changing
(12–14), and a convincing explanation for these phenom-
ena is still lacking. It has been argued that a small driving
instability may grow into mature traffic oscillations in
the absence of lane changing (15–19) owing to the string
instabilities in the mathematical models. On the other
hand, Laval and Leclercq, and Chen et al. argue that het-
erogeneous driving behavior can cause the formation and
propagation of traffic oscillations, but at the expense of
several additional parameters (20–22).

A more parsimonious explanation for this phenom-
enon started with Laval et al., in which most traffic
instabilities can be explained simply by the random
nature of drivers’ errors with the addition of a single var-
iance parameter (23). Delpiano et al. proposed a social
force car-following model implementation of this theory
that includes finite decelerations (24). However, this par-
simonious model was found to be unable to replicate the
capacity drop in the absence of lane changes as observed
empirically in Yuan et al. (8), and a reformulation of this
model was proposed in their subsequent research (14).
Recently, Xu and Laval noted that the model proposed
in the research conducted by Yuan et al. loses the ability

to replicate the simulation formation and growth under
some circumstances, and proposed a unified theory able
to replicate both oscillation and capacity (14, 25). They
also proposed a parameter estimation method that allows
for performing statistical inference, but a comprehensive
analysis of the properties of the model is missing.

The purpose of this paper is to undertake a detailed
analysis of the unified model, and show that it is able to
replicate many types of traffic instabilities consistently
with empirical data, including oscillations, capacity drop
and the concave growth pattern of vehicle speeds along a
platoon, as recently reported by Jiang et al. (26). To this
end, this paper is organized as follows. We first present
the formulation and the estimated parameter values of
the model. Then an analysis of the model properties
including platoon oscillation growth, periodic oscillation
at bottlenecks, capacity drop, and prediction of the vehi-
cle speed in the middle of the platoon. Finally, a discus-
sion is provided.

Background

The model to be analyzed in this paper was recently pro-
posed by Xu and Laval(25) and generalizes previous
research efforts as mentioned in the introduction (14, 23,
24). The model is a two-regime stochastic car-following
model that can be thought of an extension of Newell’s
simplified car-following theory (27). It is expressed as the
minimum of a free-flow term expressing the location (Y )
that the vehicle can achieve when unobstructed by traf-
fic, and a congestion term giving the most downstream
location (Z) that the vehicle can safely achieve without
colliding with its leader. It can be formulated as:
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in which xj(t) is the position of j -th vehicle at time t, t is
the wave trip time between two consecutive vehicle tra-
jectories in congestion, d is the jam spacing and jj(t) is a
stochastic process describing the desired displacement of
vehicle j during t � t and t. It should be noted that t is
typically taken as the time step of the car-following
model. The congestion term Z is approximately normally
distributed after assuming: (i) a approximately constant
leader speed during a time step, and (ii) that parameters
t and d follow the bivariate normal (BVN) distribution
with correlation r= 0, as demonstrated empirically by
Ahn et al. (28), that is:

(t, d);BVN(mt,md,st,sd, r)

in which m: and s: are the mean and standard deviation
of the variable in subscript.

The free-flow term Y is also normally distributed
because jj(t) is a stochastic process describing the desired
displacement of vehicle j during t � t and t, and which
corresponds to the integral of the speed. This free-flow
acceleration process can be formulated as:

dj(t)= v(t)dt, j(0)= 0, (2a)
dv(t)= (vc � v(t))bdt+(mvc � v(t))sdW (t), v(0)= v0, (2b)

�

in which v(t) is the current vehicle speed, vc is the desired
speed, b is the inverse relaxation time, m is a dimension-
less parameter and mvc represents the speed at which the
standard deviation of the driver acceleration is zero, W (t)
is a standard Brownian motion and s is its diffusion coef-
ficient. One can solve the equation analytically and show
that jj(t) follows approximately a normal distribution.
The parameter m provides a scale from the geometric
Brownian motion (g-BM) model reported by Yuan et al.
(m= 1) to the original Brownian motion (BM) model
reported by Laval et al. (m..1) (14, 23). A dimension-
less formulation of (2) reveals that the only two non-
observable parameters that drive this model are m and
~s2 =s2=b.

Finally, as random processes Y and Z are normally
distributed: Y;N (mY ,sY ), Z;N(mZ ,sZ), one can
show that the probability density function of
xj(t), f (x;Y), given the data up to time t and the set of
model parameters Y=(u,mt,md,b,m, ~s, r,st,sd) is
given by

f ðx;YÞ ¼

1
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dt is the complementary
error function. The mean and standard deviations of the
free-flow and congestion terms are given by:

mY = xj(ti � t0)+E½j(t0)�, (4a)
sY =SD½j(t0)�, (4b)
mZ = xj�1(ti � mt)� md, (4c)
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which is all we need to evaluate (3) and use maximum
likelihood estimation (MLE) to estimate the parameters.

Data Set

In this paper, we used the data from the previous paper
published by Jiang et al., who conducted a car-following
experiment with 25 passenger cars with homogeneous
vehicle lengths that are all equipped with data collection
devices (26). In this experiment, the vehicle platoon tra-
veled northbound and southbound repeatedly, on a two-
way 3.5 km suburban road segment in Hefei, China. The
grade data is also contained in the dataset. In the experi-
ments, the lead vehicle was required to maintain a given
constant speed and the other vehicles were expected to
follow the leader naturally. There was no interference
from traffic signals or other vehicles in the experiments.

Instead of using the parameter values obtained from
the research conducted by Ahn et al., we estimate the
parameter values (28). The parameter estimation metho-
dology was introduced in a previous publication by Xu
and Laval (25). Unless otherwise indicated, most of the
experiments presented here use the parameters estimated
from this dataset, which are summarized in Table 1.

Model Properties

In this section, we undertake a detailed analysis of the
unified model and show that it is able to replicate virtu-
ally all types of traffic instabilities consistently with
empirical data, including oscillations, capacity drop, hys-
teresis, and the concave growth pattern of vehicle speeds
along a platoon, as recently reported (26).

Table 1. Parameter Value Estimation Results

Parameter Estimated value t-statistic

mt 0.62 3.3
md 4.94 3.8
b 80 96.8
m 9.8 6.1
~s 0.020 5.8
st 0.24 0.6
sd 2.27 1.0
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Physical Bounds on the Parameters m, ~s

As with any normally distributed random variable there
is always a probability that it will be negative. Following
on from the previous research, for the worst case sce-
nario v(0)= 0, we need Pfv(bt)ł 0gł a, for a small
prescribed a (23). For typical values of b ’ 0:07 s �1 and
t ’ 1:2 s and a= 0:1, one has:

m~s ł 0:23

Which is a secure range of parameter values for the
acceleration process starting from a complete stop. If a
negative speed is realized in the simulation, it should be
set to 0.

Free-Flow Acceleration Process

In this section we analyze the variability of the
free-flow acceleration process (2). To eliminate
irrelevant parameters from this analysis, we can for-
mulate the key variables of this model in the dimen-
sionless form. One possibility is the following
transformations:

~t=bt, ~v(~t)= v(~t)=vc, : ~s2 =s2=b: ð5Þ

in which dimensionless variables are indicated with a
tilde.

Figure 1 shows five realizations of the free-flow accel-
eration process (2) along with the 90% probability
bounds, for different values of the model parameters. All
three combinations of the parameter values capture the
exponential growth of the vehicle speed during the accel-
eration process, but they all exhibit different variabilities.
As a reference, the figure also includes the empirical data
from Laval et al. (23).

The speed variability can be measured by the coeffi-
cient of variation of the dimensionless speed:

C½~v(~t)�=V ½~v(~t)�1=2=E½~v(~t)�. we present C½~v(~t)�=(m~s) in
Figure 2, which shows that most of the speed variability
occurs at the beginning of an acceleration process, that
is, for ~v0\0:5 but converges for all values of ~v0. It can be
shown that this value is almost independent of ~s and
also independent of m for large m s. One can then find

that C½~v(~t)� converges to (m�1)~sffiffiffiffiffiffiffiffi
2�s2
p . For a g-BM model, that

is, m= 1, the variability of speed converges to 0. For a

BM model, that is, m..1, ~s ł 0:23
m

’ 0, the value

C½~v(~t)�=(m~s) converges to (m�1)~s

m~s
ffiffiffiffiffiffiffiffi
2�s2
p ’

ffiffiffiffiffiffiffi
0:5
p

, which corre-

sponds well with the results reported by Laval et al. (23).
A similar analysis shows that the position variability
converges to 0 regardless of the initial speed.

These results indicate that regardless of the parameter
values, the speed variability is maximal at the beginning
of the acceleration process and that it slowly converges to
a value between 0 and

ffiffiffiffiffiffiffiffi
1=2

p
as time passes.

Figure 1. Five realizations along with the 90% probability bounds for the acceleration process starting from ~v0 = 0 along with empirical
vehicle acceleration data from Laval et al. (23). In the figures, each line represents each acceleration process and the gray area represents
the 90% probability bounds.
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Concave Growth of Platoon Oscillation

The concave growth of the vehicle platoon oscillation
was first observed by Jiang et al. (26). Tian et al. found
that the growth pattern in different oscillations collapses
into a single concave curve, which indicates the law of
the oscillation growth is universal (29). Treiber and
Kesting showed that the Brownian motion model in
Laval et al., and the intelligent driver model (IDM)
model with noise and indifference regions are all able to
reproduce the concave growth pattern, strongly indicat-
ing that a stochastic component is vital for replicating
this important phenomena (19, 23).

Here, we show that the model analyzed in this paper
is also able to reproduce the concave growth of the pla-
toon oscillation, as seen in Figure 3. The left column in
the figure corresponds to the model results with para-
meters from Table 1, in which it can be seen that the fit
deteriorates for low lead vehicle speeds. The right col-
umn in the figure correspond to the same parameter val-
ues except for m and ~s which were chosen to optimize
the fit with the data. This shows that the proposed model
reproduces the concave growth of platoon oscillation,
and that the parameters m and ~s dictate the shape of the
growth.

We also conducted a 300-vehicle car-following simula-
tion experiment that shows that the speed standard
deviation first increases with the vehicle index in a con-
cave way and then stabilizes; as seen in Figure 4. This
result is consistent with previous research (14, 30).

It is interesting to investigate the maximum oscillation
amplitude and also the number of vehicles (stable vehicle
index) taken to stop the oscillation growth; see Figure 4.
We conducted simulations with different lead vehicle
speeds and model parameters. It is shown that the maxi-
mum oscillation amplitude is an increasing function of
the lead vehicle speed, almost independent of the model
parameters. In the meantime, the stable vehicle index

increases with vlead and decreases with the production of
m~s. This relationship is visualized in Figure 5.

Periodic Oscillation at Uphill Bottlenecks

In this section, we study the effects of the parameters m

and ~s on the period and amplitude of the oscillations
produced by the model, and compare them with empiri-
cal data. We conducted simulations on a 600m one-lane
flat road, except for a 100m uphill segment starting at
location x= 400m. To take the roadway grade into
account, one can express the desired speed as
vc = u� gG=b, in which g = 9:81 m/s 2 is the accelera-
tion of gravity and G is the grade expressed as a decimal.
A free-flow speed of u= 120 km/h was used for the
simulations and for varying the parameters b, G, m and
~s within their typical ranges. Then we used Fourier spec-
trum analysis to estimate the period and amplitude of
the speed series oscillations 100m upstream of the bot-
tom of the upgrade, as suggested in the previous research
(23, 31).

Figure 6 shows the distribution of dimensionless peri-
ods (period times b) and dimensionless amplitudes
(amplitude divided by vc) as a function of m~s and the
average speed at the start of the uphill segment, Vavg. It
can be seen that: (i) the dimensionless period is a decreas-
ing function of m~s and the dimensionless amplitude is an
increasing function of m~s; (ii) the distribution of the
dimensionless period and the dimensionless amplitude as
a function of Vavg agrees well with the empirical data
reported previously (18, 32); and (iii) all distributions
exhibit a large variance. These results are similar to those
reported previously, except that the relationship between
the dimensionless period and amplitude are correlated
with m~s and not simply ~s (23).

The relationship between Vavg and m~s is presented in
Figure 7. Vavg decreases with m~s. Again, this result is sim-
ilar to that reported in previous research, except that Vavg

Figure 2. Rescaled coefficient of variation for the dimensionless speed ~v(~t) for several values of the initial speed ~v0.
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Figure 3. Simulated speed standard deviations for 25 vehicles in a vehicle platoon. The leading vehicle drives at vlead = 30 km/h,
vlead = 40 km/h, and vlead = 50 km/h. The gray dots are obtained from Jiang’s car-following experiments (26). The probability bounds in
the left column are generated from the estimated parameter values in Table 1 and those in the right column are generated using the
selected parameter values. The selected values are m= 1:25, ~s= 0:165 for vlead = 30 km/h and vlead = 40 km/h, and the selected values
are the same as the estimated values for vlead = 50 km/h.

Figure 4. Simulated speed standard deviations for 25 vehicles in a vehicle platoon. The leading vehicle drives at vlead = 30 km/h (left
column) and vlead = 50 km/h (right column). Parameter values are m= 1:25, ~s= 0:176. The lines in the figures represents the 5th, 25th,
50th, 75th and 95th percentile of the realizations.
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is correlated with m~s but not only ~s (23). This indicates
that the average speed at the bottleneck decreases with
the randomness of driver accelerations.

Speed-Capacity Relationship in Congestion

Recent empirical findings reported by Yuan et al. show
that the queue discharge rate out of a moving jam

Figure 5. Relationship between the maximum speed variation (left column), the stable vehicle index (right column) and the vlead, m~s. Here
the speed process does not start with ~v(0)= 0 therefore we can accept a larger range of m~s than mentioned in the previous section.

Figure 6. (a)(b) The dimensionless period and the dimensionless amplitude as a function of the model parameter m~s. (c)(d) The
dimensionless period and the dimensionless amplitude as a function of Vavg . The lines represent the 5th, 25th, 50th, 75th and 95th
percentile of the simulation results. The orange circles in part (c) are empirical data originally taken from (18) and the blue dots in part (c)
and (d) are taken from previous research (32). To convert the empirical data into the dimensionless form we used w = 18 km/h, b= 0:07
s �1 and the following linear regression on the simulated data: vc = 3:6Vavg � 71:4.
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increases with the speed in the queue (8). On average,
they observed that the capacity drop magnitude is around
26% if the vehicular speed in congestion is 0 km/h
and decreases as the vehicular speed increases. The
mechanisms behind this ‘‘speed-capacity’’ relationship
were recently unveiled by Yuan et al. (14): the key ingre-
dients are bounded vehicle acceleration and an error term
that decreases with the speed. As noted earlier, the geo-
metric Brownian motion model reported previously
reproduces this phenomenon for the first time, but loses
the ability to generate realistic traffic oscillations (14).
The model analyzed in this paper does not have this
drawback, as shown below.

We performed a simulation of a 25-vehicle car-
following experiment on a one-lane road with no

passing, in which the lead vehicle drives initially at a con-
stant low speed, then accelerates to free-flow speed, the
resulting discharge rate was measured at that location, as
seen in Figure 8.

Figure 9 plots the results, in which it can be seen that
the model is able to successfully reproduce the increasing
speed-capacity relationship and that the slope of this
increasing relationship is inversely proportional to m.
This is as expected as small values of m mean that the
model is closer to the geometric Brownian motion model.

The important point here, is that a value of m ’ 1:2 is
able to replicate both the speed-capacity relationship and
realistic traffic oscillations. To observe this, the speed-
capacity relationship is shown in Figures 9 and 10, and
an example of the realization of traffic oscillations is pro-
vided in Figure 11.

We also found that the queue discharge rate decreases
with ~s for the same values of m and ~v, two examples are
provided in Figure 10. As we can see, for m= 1:25 and
~v= 0:6, the corresponding dimensionless queue dis-
charge rates are approximately 0.95, 0.91 and 0.87 for
~s = 0:15, 0:25, and 0:35.

Vehicle Speed Distributions

Here we use repeated simulations of the same scenario to
approximate the speed distribution of each vehicle
n= 1, 2, . . . in a platoon, in which the trajectory of the
leader n= 1 is taken from empirical data. We use two
datasets: (i) from Jiang et al. as mentioned above, and (ii)
from Laval et al. who performed a similar car-following
experiment on a two-lane road close to Georgia Tech with
six vehicles (23, 26). The grade data was also provided.
For both of the datasets, the realizations of the follower
speeds (15th vehicle for dataset 1, and 6th vehicle for
dataset 2) fall into the probability bands and the width of
the probability band is a function of m~s. Examples are
provided in Figure 12. In the predictions, the trajectories
of the platoon leader and the initial conditions of all fol-
lowers were provided. Then, we ran simulations repeat-
edly to obtain distributions of the predicted vehicle speed.

Discussion

This paper analyzes the properties of the model proposed
by Xu and Laval, which is an extension to previously
conductedworks (14, 23, 25). The extension is achieved
by adding a dimensionless parameter m which regulates
the type of driver error on a scale from Brownian to geo-
metric Brownian acceleration processes. A suitable value
of m, that is, m ’ 1:2, can allow the model to reproduce
the best features of the BM and g-BM models, namely
realistic traffic oscillations and the speed-capacity rela-
tionship. Furthermore, this model also captures the

Figure 7. Average speed at the bottom of the uphill segment as
a function of m~s. The lines represent the 5th, 25th, 50th, 75th
and 95th percentile of the simulation results.

Figure 8. A sample trajectory of the queue discharge experiment
with ~v0 = 0:1, m= 1:25, and ~s= 0:35. The initial spacing of the
vehicles is calculated based on the triangular fundamental diagram
r= d+~v0t. The discharge rate is measured at the black dash line
at which the vehicle speeds reach free flow speed.
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concave growth of the platoon oscillation and predicts
the distributions of the vehicle speeds well. For the

concave growth pattern of the vehicle platoon, we find
that the growth pattern is influenced by the lead vehicle
speed and the model parameter m~s.

Parameters m and ~s are the two parameters that con-
trol the model performance according to the dimension-
less formulation of the model. However, the parameter
values of m and ~s are not universal and need to be cali-
brated in different regions. To do this, we can first try to
use MLE to estimate the model parameter values if the
vehicle platoon data is available. If we only have the loop
detector data, we can calculate the period and amplitude
of the traffic oscillation from the speed series and then
refer to Figure 6 to solve the local value of m~s.

The product of m and ~s has a big impact on the model.
It determines: (i) the oscillation period and amplitude; (ii)
the average speed at the bottleneck; (iii) the discharge rate
at the bottleneck; (iv) the stable vehicle index of the con-
cave growth of the platoon oscillation; and (v) the width
of the probability band of the predicted vehicle speed.

Figure 9. (a) Simulation results and a linear fitting of the desired model with the parameter m= 1, which shows a positive relationship between
the queue discharge rate and speed in congestion, and (b) dimensionless queue discharge rate as a function of the dimensionless speed in
congestion for m 2 f1, 1:2, 3, 10g. The model gradually loses its ability to reflect the positive relationship between the speed and queue discharge
rate with the increase of the value of m. The dimensionless queue discharge rate is the ratio of the queue discharge rate to the roadway capacity.

Figure 10. Dimensionless queue discharge rate as a function of speed for different values of ~s. In the figures, we can observe that for
the same speed, the queue discharge rate decreases with ~s.

Figure 11. An example of the realistic traffic oscillations
generated using the proposed model. The model parameters are
m= 1:2 and ~s= 0:16.
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If we are trying to replicate the concave oscillation
growth and predict the vehicle speed distributions with the
estimated parameter values found in Table 1, we find some
deviation from empirical data and this deviation depends
on the platoon lead vehicle speed. This means the metho-
dology for the parameter estimation reported in Xu and
Laval could be improved to incorporate these other types
of performance measures (25). Alternatively, instead of esti-
mating the parameters with vehicle pairs (1st, 2nd), (2nd,
3rd)...(i th, i+ 1 th)..., we can instead use a constant leader,
that is, (1st, 2nd), (1st, 3rd)...(1st, i th)...This method may
give us better results while predicting the vehicle speed dis-
tributions with the estimated parameter values.

The current work is limited to homogeneous vehicle
lengths, as Coifman indicates that the vehicle length has
an impact on the parameters t and d, and traffic waves
travel at different speed across vehicles of different lengths
(33). In the future, we plan to accommodate our model to
fit a situation in which vehicle lengths are heterogeneous.
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