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The congestion term



The free-flow term

Figure 1 Relationship between the driver’s desired acceleration and vehicle speed.

Note: Data taken for 

platoon leaders only 

when accelerating 

from a red light.



(a) Proposed model (b) Brownian motion model (c) Geometric Brownian motion model

𝑚 ≥ 1 𝑚 ≫ 1 𝑚 = 1

The free-flow term

Figure 2 The relationship between 95% probability interval 
of acceleration and vehicle speed for different models

Yuan et.al, 2018Laval et.al, 2014



𝑊(𝑡): a standard Brownian motion

σ: diffusion coefficient

According to Central Limit Theorem, the 
distribution of 𝜉(𝑡) is normal such that 
the free-flow term Z follows normal 
distribution.

The free-flow term



The free-flow term
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Define dimensionless variables with a tilde as follows:

The dimensionless form:

Besides initial conditions, the only two non-observable parameters that drives this 
model are 𝑚 and ෥σ.  The product of 𝑚 and ෥σ has a big impact on the model 
performance.

The free-flow term



Estimation of model parameters



Data for estimation of model parameters

Figure 3 Example trajectory of car-following experiments used for parameter estimation (Jiang et.al 2014)



Estimation of model parameters

Table 1 Estimated parameter values 
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Analysis of the model

1. Acceleration process

2. Concave growth of platoon oscillation

3. Periodic oscillations at uphill segments
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Analysis of the model

1. Acceleration process

2. Concave growth of platoon oscillation

3. Periodic oscillations at uphill segments

4. Speed-capacity relationship at bottlenecks

Yuan et.al, 2015



Analysis of the model

1. Acceleration process

2. Concave growth of platoon oscillation

3. Periodic oscillations at uphill segments

4. Speed-capacity relationship at bottlenecks

5. Prediction of vehicle speed distributions



1. The acceleration process

Figure 4 Five realizations along with the 90% probability bounds for the acceleration 
process starting from a complete stop along with empirical data



2. Concave growth of platoon oscillation

25-veh platoon 
simulation results 
compared to real data 
(Jiang et. Al, 2014)



2. Concave growth of platoon oscillation

300-veh platoon simulation



2. Concave growth of platoon oscillation

Figure 5 Relationship between the maximum speed variation, the stable vehicle index and 
the lead vehicle speed, model parameters. 



3. Periodic oscillations at uphill segments

100-m uphill segment

Figure 6 A typical simulation result with an upgrade of 5% and 𝑚 = 1.2, ෤𝜎 = 0.16



3. Periodic oscillations at uphill segments

10000 simulation runs.

Empirical data:

Treiber & Kesting 2012  

Knoop et.al 2012



4. Speed-capacity relationship at BNs

Figure 8 A sample trajectory of the queue discharge experiment.  Discharge rate is 
measured at the back dash line where vehicle speeds reach free-flow speed



4. Speed-capacity relationship at BNs

The model gradually loses its ability to catch the speed-capacity relationship with the increase of the value of  𝑚



4. Speed-capacity relationship at BNs

Figure 9 Dimensionless queue discharge rate as a function of speed in 
congestion for different values of model parameters



4. Speed-capacity relationship at BNs

A value of 𝑚 ≈ 1.2 is 
able to reproduce 
both the speed-
capacity relationship 
and realistic traffic 
oscillations.



5. Vehicle speed distributions

The model predicts the 

trailing speed 

distributions well.  The 

width of the probability 

bands increase with ෤𝜎



Conclusion

• We add a unitless parameter to generalize two existing stochastic driver 

acceleration models.  Model parameters can be easily estimated by MLE.

• A suitable value of 𝑚, e.g. 𝑚 ≈ 1.2, can make the model reproduce speed-

capacity relationship and realistic traffic oscillations.

• The product of 𝑚 and ෤𝜎 has a big impact on the model, it determines:

(i) oscillation period and amplitude

(ii) stable vehicle index of the concave growth of platoon oscillation

(iii) average speed at the bottleneck
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